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ABSTRACT

A method has been developed to apply forced
convection heat transfer by gas jet impingement
to weld metals deposited by the GTAW process at
heat inputs in excess of 100 kJ/in. The method
involves the use of multiple gas jets directed
at the surface of the weld pool to increase
convective heat transfer (i.e. forced convective
cooling)

Autogenous bead-on-plate welds were made in
a titanium alloy with and without forced convective
cooling. All welding variables were maintained
constant, only the introduction of the cooling
gas during welding was different. The weld pool
geometry, temperature distributions, macrostructure
and microstructure of the welds were evaluated.

The results of visual and macrostructural
observations indicate that forced convective
cooling forms a refined weld metal macrostructure
through control of the weld pool geometry. In
addition to grain refinement, forced convective
cooling modifies the shape of the weld bead. The
depth to width ratio of the weld bead increases
and the width of the weld HAZ decreases. The
results of temperature measurements indicate
that forced convective cooling increases the
weld metal cooling rate. By increasing the
cooling rate the time at transformation is
suppressed and a finer weld metal microstructure
is produced. Additionally, the weld pool surface
temperature decreases and thermal gradients near

the solid-liquid interface also decrease.

ADMINISTRATIVE INFORMATION

This report was prepared as part of the IR/IED Program under the sponsor-

ship of Dr. A. Powell, David Taylor Naval Ship Research and Development Center

(DTNSRDC),* Code 01. The effort was supervised by Mr. P. Holsberg, Head, Welding

Branch, DTNSRDC, Code 2815, under Work Unit 2815-145, Element Number 61152, Task

Area ZR0220101. This report satisfies Work Unit Milestone Number 1-2815-145-21.

*Definitions of abbreviations used appear on page iv.
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INTRODUCTION

BACKGROUND

High heat input welding processes offer the potential of significant

advances in welding efficiency by reducing the number of welding passes and

between-pass mechanical cleaning. It is estimated that a fifty percent decrease

in welding costs can be achieved by utilization of higher heat input values and

deposition rates.l* However, the solidification structure of the fusion zone is

influenced by the magnitude and duration of the weld thermal cycle.293 High

heat inputs into the fusion zone and corresponding slow cooling rates result in

increased solidification times for grain growth. As the weld solidification

structure coarsens and various segregation mechanisms have time to develop, the

strength, toughness, and ductility of the weld deposit decreases.2 ,3 As a

result, limitations on heat input are included in the process specifications

of weldable alloys used in ship construction.4  By developing a method to

control the solidification structure of high heat input welds it should be

possible to reduce the labor costs of welding and improve the mechanical

properties and fracture resistance of the weld metal deposit.

Control of the weld solidification structure has been attempted often in

both ferrous and nonferrous alloys. Methods employed to date have fallen into

either one of the two general categories of inoculation or dendrite fragmentation.

Inoculation normally involves the introduction of minute quantities of high

melting point particles into the trailing edge of the weld pool to act as

nucleation sites for grain growth. Dendrite fragmentation resulting from

electromagnetic stirring, arc oscillation, torch vibration or combinations of

*A complete list of references is given on page 31.
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these, involves the mechanical detachment of dendrite tips or the melting off

- of secondary dendrite arms to serve as nucleation points for new grains to

grow. A review of these methods5_8 has shown that solidification control of

high heat input welds is much more difficult due to the high temperatures and

DJ P

P thermal gradients (values of 1900F/in and above are reported in the literature)5

found in the weld pool. For inoculation, high inoculant levels are required to

generate sufficient cooling at the solid-liquid interface to protect the

particles from melting. Although extensive grain refinement has been obtained

6 7using TiC, TiB2 and TiC/ Fe-Ti mixtures in mild steel, and yttrium in titanium,

the loss of fracture toughness due to grain boundary embrittlement has limited

the usefulness of this approach for high heat input processes. For dendrite

fragmentation, high thermal gradients reduce the extent of supercooling, limiting

dendrite tip growth, and fragments which are removed and swept into the bulk of

the weld pool would most probably be remelted.8

An alternative approach investigated in this study involves the use of

multiple gas jets directed at the surface of the weld pool to increase convective

heat transfer (i.e. forced convective cooling). Relatively large heat transfer

coefficients have been obtained by multiple gas jets impinging on a solid surface,

Figure 1, while providing a high degree of control of the surface heat transfer

rate and distribution.9- 12 For the case of welding, increasing convective heat

transfer is erpected to extract heat quickly from the weld pool, providing

temperature conditions more favorable for equiaxed grain growth. Additionally,

enhanced cooling by jet impingement may reduce the time at transformation

temperature and the time to cool to values more characteristic of lower heat

input levels.

3
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Although brief applications of forced convection heat transfer have been

performed on aluminum weldments,5, 13 ,14 no studies have been performed on forced

convective cooling of high heat input welds in any alloy or on the metallurgical

improvements that may result. The objective of this investigation is the .- *"

application and evaluation of the effects of forced convection heat transfer 4

on weld metals deposited by high heat input (>100 kJ/in) welding processes. In

this work the temperature conditions in high heat input welds are examined and

the potential for weld modifications by forced convective cooling is discussed.

WELD POOL SOLIDIFICATION

Within and around the weld pool are a series of isotherms. One of these

isotherms is the effective liquidus temperature of the alloy and corresponds to

the weld pool-base metal interface. It is at this interface that solidification

begins with the solid phase growing off of the partially-melted base metal grains.

This type of growth is referred to as epitaxial growth and is well documented

in the welding literature. 3'5 15  The initial growth of partially melted grains

in the base metal is followed by a period of columnar grain development which

dominates the remainder of weld pool solidification. As the columnar grains -4

grow into the fusion zone, their actual shape and size is determined by

"competitive growth."3 This process depends on the geometry of the weld pool

as shown in Figure 2. Grains growing in certain directions parallel to the

maximum thermal gradient have a competitive advantage over less favorably

oriented grains. This difference in columnar grain development for tear-shaped

and elliptical weld pools has been demonstrated experimentally in several

studies.16,17  The welding process determines how heat is introduced in the

weld zone, and therefore the weld pool geometry.

4
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The columnar structure may be cellular or dendritic depending on the

solidification conditions. Briefly the mechanism of solidification is as

follows. In most alloy systems the solid is leaner in solute than the liquid

" in equilibrium with it, and as the weld metal cools through the solidification

range, solute is rejected at solid-liquid interface. Because the freezing

process is so rapid that diffusional processes cannot effectively remove the

excess solute, solute enrichment occurs at the solid-liquid interface until a

dynamic equilibrium is reached.1 6 The resulting dynamic equilibrium provides

an excess of solute in the liquid near the interface with the solute content

decreasing to the nominal liquid composition at some distance from the interface,

Figure 3a. The concentration of the solute in the liquid at a distance, x, ahead

of the interface is given by
18

C1  Co  I + 1- ko  exp (R .. -ko D

* where Cy concentration in liquid at a point x, ahead of the interface
Co - composition of the alloy
ko = ratio of solute concentrations in solid and liquid
R = solidification rate Z.
D = diffusion coefficient
X = distance ahead of interface

The effective liquidus temperature, Te, is dependent on solute concentration

in the liquid. 18 As the liquid is enriched due to rejection of solute at the

* solid-liquid interface, the effective liquidus temperature decreases ahead

of the advancing interface. The effective liquidus temperature ahead of

the interface is shown schematically in Figure 3b and is given by

Te - To - mC1  (2)

where To  = equilibrium melting point of the pure metal
m - slope of the liquidus line in the phase diagram

5
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For any point, x, ahead of the interface the effective liquidus temperature

can be obtained by substituting equation (1) into (2) and obtaining

r./--R"\1 ("

Te - To  - C i + - exp x (3)

where Te = effective liquidus temperature

The actual temperature, T, at any point in the liquid is given by

T - To - ko  + G x (4)

where T - actual temperature at a point, x, ahead of the interface

G = thermal gradient

The region within which the actual temperature is less than the effective

liquidus temperature is said to experience constitutional supercooling as shown

in Figure 3b. If the degree of supercooling is small, a cellular structure

results. A greater degree of supercooling gives rise to a dendritic growth

mode.

The extent of constitutional supercooling in a given alloy depends on the

thermal gradient, G, and the solidification rate, R, in the liquid. 16 Tiller

and Rutter 19 have summarized the influence of these factors on the mode of

solidification in the manner shown in Figure 4. lgh thermal gradients and

slow solidification rates favor cellular growth. Low values of G/(R)I/2 indicate

an increased tendency for constitutional supercooling and a dendritic mode of

solidification. For a given solidification rate and material composition, the

solidification morphology is influenced primarily by the thermal gradient in

the weld pool. Thus, the theoretical basis for the production of an equiaxed

6
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weld structure is to reduce the thermal gradient to low enough values to allow

heterogeneous nuclei to develop and grow.

APPROACH

It was noted during the literature survey that there were no studies on

forced convection by jet impingement of weld metals deposited by high heat

input welding processes. Therefore, the initial efforts focused on a heat

transfer analysis to maximize convective cooling at the surface of large weld

pools. Included in the analysis were the cooling gas and the number, size,

shape and spacing dimensions of gas jet orifices. From the heat transfer

analysis, a jet impingement plate was prepared by machining a 5 x 7 array of

0.060-inch diameter holes with a center to center hole spacing of 0.25-inch in

a 1- x 2- x 0.03-inch copper sheet. The upstream edges of each gas orifice

were slightly rounded to avoid vena contracta convergence downstream of the jet

array. A special device was constructed to apply forced convective cooling

during in-process welding, Figure 5. The device consisted of a copper tube to

supply gas to the jet plenum, an outer copper enclosure with provisions for

water cooling, an inner jet plenum containing a baffle and screen to ensure

even distribution of the gas and the jet impingement plate. The device was

attached to the rear of a GTAW torch so that multiple gas jets would impinge

perpendicular to the surface of the weld pool.

EXPERIMENTAL PROCEDURES

The plate material used in this study was titanium alloy Ti 6AI-4V of

1-in. thickness. Prior to welding, the plate surfaces were degreased with

acetone and rotary wire brushed. Using the welding parameters in Table 1,

7
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autogenous bead-on-plate welds were produced by the automatic gas tungsten arc

process at a heat input of 115 kJ/in. All welding parameters were maintained

constant, only the introduction of the convective cooling gas during welding

was different.

'| J

TABLE 1 - WELDING PARAMETERS FOR GTAW BEAD-ON-PLATE WELDS J

I Welding I Arc Travel I Torch Convective I""
I Current I Voltagel Speed I Gas ICooling Gast Heat Inputj -:":-

Ildentification Amperes I Volts I ipm I schf I schf I kJ/in I*II i 1I 1 1:

Control I 640 1 15 1 5 1 60 0 1 115 "

Convective I 640 1 15 1 5 160 1 200 1 115 I
Cooling I [ I "' "I I I. _ _ I _ _ _ _ _ I _ _ _ I

Visual observations of the arc shape and weld-pool geometry during welding

were made via a weld pool viewing system. The system consisted of a fiber

optic device attached to the welding torch, appropriate filters, camera and

video cassette recorder.

Tempera-ure distributions in the weld pool were measured using tungsten - 5%

rhenium/tungsten - 26% rhenium thermocouples. The thermocouple ends were dipped

by hand into the center of the weld pool and held stationary until frozen into

the advancing solidification front. Additional welds were produced in which

the thermocouples were plunged in the weld pool to measure weld metal cooling

rate. For all temperature measurements, the thermoelectromotive force was

recorded on a fast response chart recorder.

Weld bead shape and HAZ width were characterized using light microscopy.

Quantitative metallography was used to characterize the columnar grain size of

the weld macrostructure and alpha platelet size of the weld microstructure.

8
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RESULTS " %-

ARC SHAPE AND WELD-POOL GEOMETRY

The shape of the welding arc and weld pool geometry during fabrication of

the bead-on-plate welds is shown in Figure 6. For welds produced without

convective cooling the welding arc was large and diffuse, assuming an approxi-

mately conical shape, Figure 6a, typical of the GTAW process. 2 With

the introduction of convective cooling the welding arc was collimated and

focused on a smaller area of the baseplate. The shape of the arc was cylindrical

near the tip of the tungsten electrode, changing to a smaller conical shape at

the surface of the weld pool, Figure 6b. Gas jet impingement on the trailing

edge of the weld pool caused a change in weld pool geometry from tear-shaped,..

Figure 6a, to liptical, Figure 6b, as seen on the weld pool surface.

TEMPERATURE DISTRIBUTIONS

A typical thermocouple trace is shown in Figure 7. At the position of

the thermocouple in the liquid, temperature was uniform with or without forced

convective cooling. In welds where the thermocouple was dragged from a control

weld pool into a convectively cooled weld pool a decrease in peak surface

temperature of approximately 140.F was observed. In the liquid zone, near the

solid-liquid interface, forced convective cooling reduced the thermal gradient

from 2200OF/in to 1900*F/in. The effect of this reduction on constitutional

supercooling is shown in Figure 8. The effective liquidus temperature for

Ti-6AI was calculated using equation (3). The actual temperature ahead of the

solid-liquid interface is also shown in Figure 8 and was calculated using

9 ~#- p.



equation (4) and the measured thermal gradients. By comparing the gradient of

Te with that of T it can be seen that forced convective cooling increases .

the maximum length of the supercooled region from 0.005-in. to 0.007-in.

The thermal cycles in the solid zone are shown as a function of time in

Figure 9. For titanium, the temperature of interest is the start of the beta t. .

to alpha phase transformation, approximately 16000F. At this temperature,

forced convective cooling increases the solid state cooling rate from 19°F/s

to 96°F/s. Figure 10 shows the continuous cooling transformation diagram

developed previously for Ti-6A1-4V.20  This diagram describes the beta to alpha

decomposition kinetics. Superposition of the weld metal cooling rates measured

in this study on the CCT diagram shows that the time for nucleation and growth

of the alpha phase and the time to cool (to 1000*F) are reduced with convective

cooling. These results are presented in Table 2. Data for titanium welds

fabricated at various heat inputs are also provided for comparison purposes. 2 1

BEAD SHAPE AND GRAIN SIZE .-..

Visual examination of the welds showed good weld bead contour with no

indications of undercut from gas jet impingement. Forced convective cooling

did modify the shape of the fusion zone, Figure 11, increasing the depth of

penetration and decreasing the width of the weld. The width of the weld HAZ

was also reduced with convective cooling. This information is provided in

Table 3.

Bead-on-plate welds produced without convective cooling exhibited a coarse

columnar macrostructure, characteristic of high heat input. 2 Large single

10
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TABLE 2 - TRANSFORMATION AND COOLING TIMES FROM CCT DIAGRAM

*II I I. I
I I Cooling Rate I Transformation I Time to Cool tL-I-
I Heat Input I (1600*F) I Time I(2000* to 1000F)I -x-,

lIdentification I kJ/in I QF/s I s I s ""K
-IIII I "I-

I I" " I I
Control 115 19 11 100

Convective I "
Cooling 115 95 2 1 13 "

A 156 5 25 185

B 94 25 10 90 .

I C I 62 I 39 I4 I30

D 29 65 2 18 "

TABLE 3 -BEAD SHAPE AND HAZ WIDTH OF GTAW WELDS

* IDepth of Penetration IWeld Width ID/W IHAZ Width
ldentification in. I in. Ratio in.

IControl Dp 0.500 of1.125 e r1:2.25 0.125 
*Idetfctin i.i n. I Ra i In ! -!I:

Convective I I "
Cooling I 0.625 0.970 I 1:1.6 0.062 .

I__ _ _ _ _ _ _ _ _ I "._ _ _-_'.

* . . . .= ..-- *.-



grains were observed to completely traverse the transverse fusion zone thickness,

Figure lla. With the introduction of convective cooling a predominantly equiaxed -. .

transverse macrostructure was obtained, Figure llb. This refinement extended

through the depth of the fusion zone. Quantitative metallographic measurements

of the weld macrostructure are provided in Table 4. The columnar grain size,

as measured by the area, perimeter or diameter of columnar grains in the

transverse (TS plane) cross-sections of Figure 11, was reduced by a factor of

2-3 with convective cooling. Measurement of the columnar grains parallel to

the welding direction (LT and LS planes) showed a slightly smaller reduction in

olumnar grain size with convective cooling. The macrostructure of the --"

convectively cooled welds parallel to the welding direction, Figure 12, exhibited

a curved columnar structure which is consistent with columnar grain development

* in an elliptically shaped weld pool.5 96

Quantitative metallographic measurements of the alpha platelet size are

provided in Table 5. Bead-on-plate welds produced with convective cooling to

enhance cooling rate had a smaller alpha platelet size than the welds produced

without convective cooling.

DISCUSSION

From the literature review it was apparent that the temperature conditions

in the weld pool exert a considerable influence on the resultant solidification

structure. The method developed to apply forced convective cooling to large

weld pools was expected to provide temperature conditions more favorable for

equiaxed growth by accelerating convective heat losses at the surface of the

weld pool. The results of Figure 8 show that the degree of supercooling ahead

of the solid-liquid interface is increased as a result of the reduction in

thermal gradients obtained with gas impingement.

12



TABLE 4 - COLUMNAR GRAIN SIZE OF GTAW WELD MACROSTRUCTURE r

F i I I':
I I Area I Perimeter Diameter ,

Identification Plane I in.2 x 10-3  in. x 0-1 I in. x 10-li

Control TS I 9.3 I 4.4 1 .7III I
Convective I , -
Cooling TS I 2.8 2.2 0.8 -

Control LT I 4.6 I 3.1 I 1.0I II I "I: : i : '

Convective I I I '
Cooling LT I 2.2 I 2.1 I 0.7 .

Control LS I 2.8 I 2.6 I 0.9 .II Il " ' -"
l Convective IIII
Cooling LS I 1.3 I 1.6 I 0.5 .I I I. ,I I

T

L

TABLE 5 - ALPHA PLATELET SIZE OF GTAW WELD MICROSTRUCTURE

IiI I . ..F
I I I Area Length I Width I ASTM .
Identification I Plane I in.2 x 10-81 in. x 10- 4  in. x 1O-4tGrain Sizel

I Control I TS I 0.9 2.0 I 0.6 I 14 -II I I I I •
I Convective I TS I 0.4 i1.6 I 0.4 I 15
I Cooling I I I I -
I __ __ 1 13 I _-.- '

13-.-
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However, the maximum increase in the length of the supercooled region is so

small (0.002-in) that a columnar to equiaxed growth transition, as illustrated

in Figure 4, would not be expected.

Although forced convective cooling did not produce grain refinement by

nucleation and growth, he method does form a refined weld metal macrostructure.

Refinement is achieved by a change in weld pool geometry, Figure 6, caused by

gas impingement on the trailing edge of the weld pool. This change in pool

shape ensures the survival of many more columnar grains, Figure 11, and was

effective in reducing the transverse columnar grain size by a factor of 2-3.

In addition to a reduced grain size, forced convective cooling modified the

shape of the bead, Figure 11. Observations of the plasma arc during welding

indicate that the change in bead shape is the result of arc constriction by

jet impingement adjacent to the welding torch. The focused arc reduced the

width of the weld pool, Figure 6, and is believed to be responsible for the

increase in the depth of penetration. Higher current densities and arc energy

concentrations from plasma arc constriction (i.e. plasma arc welding) have been

shown to produce higher depth to width ratios in a weld, 2 as was observed with

convective cooling, Table 4.

The size of the alpha platelets in the weld microstructure is dependent on

the continuous cooling transformation characteristics of the Ti-6A1-4V alloy

and the weld metal cooling rate. 15  For bead-on-plate welds produced with jet

impingement to enhance cooling rate, the time for nucleation and growth of the

alpha phase is suppressed, Table 2. For this reason the alpha platelets are

narrower and shorter, Table 5. It should be noted that a smaller columnar

grain Lize, as obeained with convective cooling, will also move the CCT

curve to shorter times.3 However, it was not possible to separate the

14
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effects of these two factors (smaller grain size and accelerated cooling) on -,. ,

transformation time.

Many alloys are cooling rate sensitive and the rate at which the weld metal

cools can have a significant effect on weldment properties.2 As shown in

Table 2, the cooling rate achieved with convective cooling at a heat input of

115 kJ/in is comparable to heat input levels of 20-40 kJ/in without convective

cooling. In consideration of these factors, the results of this work were

applied in an exploratory development program to accelerate cooling rates of

thick section ASTM A710 HSLA steel weldments fabricated autogenously by the

GTAW process at a heat input of 150 kJ/in. The Charpy V-notch results from

this study 21 are presented in Figure 13. Typical plate properties, and HY-80

SAW filler metal requirements 22 are provided for comparison. These data show

that the weldment produced with convective cooling had higher toughness values

than the weldment produced without convective cooling and easily meet HY-80

filler metal requirments.

CONCLUSIONS

In this work, a method has been developed to apply forced convection heat

transfer by gas impingement to Ti-6AI-4V weld metals deposited by the GTAW

process at a heat input of 115 kJ/in. The results of the application of this

method indicate the following:

o Forced convective cooling forms a refined weld metal macrostructure.

Grain refinement is achieved by a change in weld pool geometry caused by jet

impingement on the trailing edge of the weld pool.

o The weld metal cooling rate increases with forced convective cooling.

15



By increasing the cooling rate, the time at transformation temperature is

reduced and a finer weld metal microstructure is produced. r

• Forced convective cooling modifies the shape of the deposited weld

bead. The depth to width ratio of the fusion zone increases and the width of -..

the weld HAZ decreases. ,

* With the introduction of forced convective cooling the weld pool

temperature decreases and thermal gradients in the fusion zone near the

solid-liquid interface also decrease.

16
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la. Array of Round Jets in Thin Plate

lb. Array of Parallel Slot Jets with Bell-Shaped Inlets

Figure 1I Two Alternative Types of Impinging Jets used in Industry
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2a. Columnar Grain Development in a Tear-Shaped Weld Pool: Arrows
Show the Almost Invariant Direction of the Maximum Thermal
Gradient Resulting in Early Elimination of Unfavorably
Oriented Grains

2b. Columnar Grain Development in an Elliptical Weld Pool:
Progressive Change in Direction of the Maximum Thermal
Gradient is Reflected in the Survival of Many More
Columnar Grains

Figure 2 -Influence of Weld-Pool Geometry on Solidification
Macrostructure
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SOLID LIQUID

I Cg,

3a. Distribution of Solute in Liquid

SOLID DISTANCE INTO LIQUID -. .

S.SUPERCOOLD REGION

T 

3b. Constitutional Supercooling

Figure 3 - Solute Redistributions Leading to Constitutional Supercooling
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6' Figure 4 -Effect of Thermal Gradient and Solidification Rate on
Solidification Morphology
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0. 25- in.
6a. Control

0.25-in.
6b. Convective Cooling

Figure 6 -Gas Tungsten Arc Shape and Weld-Pool Geometry
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LIQUIDUS TEMPERATURE

3134

3130 CONTROL
CONVECTIVE

S3126

~3122 T=T iC 0
T=T 4 Gx
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G -2200 0FIIN ICONTROL)

* 314G -1900 *FIIN (CONVECTIVE COOLING)

3110 Ti* 6A1

0 2 4 -3 6
0 DISTANCE. INnlO-

Figurea 8 -Effect of Thermal Gradients on Constitutional Supercooling
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lla. Control Bead-On-Plate Weld .F.

0-. 25-in. -- 4

ON 

-

llb. Convectively Cooled Bead-On-Plate Weld

Figure 11 -Photomacrographs Showing Weld Macrostructure (TS Plane) -
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["0.235- in. -
Weld or+ -

12a. Control Bead-On-Plate Weld

* Wed ~j -. H0. 25 -in.-4

12b. Convectively Cooled Bead-On-Plate Weld: Note Curved
Columnar Grain Development

Figure 12 -Photomacrographs Showing Weld Macrostructure (LT Plane)
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